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Thermodynamic stability of statistical systems requires that susceptibilities be semipositive and finite. Sus-
ceptibilities are known to be related to the fluctuations of extensive observable quantities. This relation be-
comes nontrivial, when the operator of an observable quantity is represented as a sum of operators correspond-
ing to the extensive system parts. The association of the dispersions of the partial operator terms with the total
dispersion is analyzed. Special attention is paid to the dependence of dispersions on the total number of
particles N in the thermodynamic limit. An operator dispersion is called thermodynamically normal if it is
proportional to N at large values of the latter. While, if the dispersion is proportional to a higher power of N,
it is termed thermodynamically anomalous. The following theorem is proved: The global dispersion of a
composite operator, which is a sum of linearly independent self-adjoint terms, is thermodynamically anoma-
lous if and only if at least one of the partial dispersions is anomalous, the power of N in the global dispersion
being defined by the largest partial dispersion. Conversely, the global dispersion is thermodynamically normal
if and only if all partial dispersions are normal. The application of the theorem is illustrated by several
examples of statistical systems. The notion of representative ensembles is formulated. The relation between the
stability and equivalence of statistical ensembles is discussed.
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I. INTRODUCTION

Stability of statistical systems and the fluctuations of ob-
servable quantities are known to be intimately related. The
fluctuations can be characterized by the corresponding sus-
ceptibilities, such as specific heat, isothermal compressibil-
ity, or longitudinal magnetic susceptibility. The susceptibili-
ties are connected with the dispersions of the operators
representing observable quantities. In what follows, we shall
deal with the so-called extensive observables, whose aver-
ages are proportional to the total number of particles N, when
N is large �1,2�. The existence of the thermodynamic limit is
assumed, when N is asymptotically large, such that N→�.

Note that susceptibilities can also be connected with the
fluctuations of intensive thermodynamic variables, such as
pressure and temperature �3,4�. However, in this paper, we
shall consider only the fluctuations of extensive observables.

For stable statistical systems in equilibrium, the suscepti-
bilities are positive and finite, which follows from their rela-
tions to the dispersions of the corresponding operator observ-
ables �5� or, on the general thermodynamic level, stems from
the second law of thermodynamics �6�. The susceptibilities
may become divergent only at the points of second-order
phase transitions, which, however, by definition, are the
points of instability. Really, at the point of a phase transition,
one phase becomes unstable, as a consequence, it transforms
to another, stable, phase. After the phase transition has oc-
curred, all susceptibilities in the stable phase go finite.

The fluctuations of extensive observables, related to the
corresponding operator dispersions, can be classified onto
two types, according to their dependence on the total number
of particles N in the given statistical system, when the num-
ber N is large, such that N�1. This implies that the thermo-
dynamic limit is assumed. The fluctuations are called ther-
modynamically normal, when the related operator dispersion

is proportional to N. Conversely, if the operator dispersion is
proportional to N�, with ��1, then the related fluctuations
are termed thermodynamically anomalous.

The finiteness of susceptibilities in stable equilibrium sys-
tems means that the corresponding fluctuations are thermo-
dynamically normal. Oppositely, the divergence of suscepti-
bilities at the critical points shows that the fluctuations of the
related extensive observables are thermodynamically anoma-
lous. In a stable system, outside phase transition points, all
susceptibilities are finite, which tells us that the fluctuations
of all extensive observables are thermodynamically normal.

It is worth warning the reader that thermodynamically
normal or anomalous fluctuations have nothing to do with
the normal, that is, Gaussian distributions. Thermodynamic
normality or anomaly are the notions describing the thermo-
dynamic behavior of the related operator dispersions with
respect to the total number of particles. In calculating the
corresponding averages, any quantum or classical probability
measures, of arbitrary nature, can be employed.

In the present paper, general relations between the fluc-
tuations of observables and the stability of statistical systems
are studied. The emphasis is on the case, which is not a
standard one, when the observable quantities are represented
as sums of several terms, corresponding to macroscopic parts
of the system. Then the relation between the fluctuations of
the partial terms and the fluctuations of the global observ-
ables is not evident. A general theorem is rigorously proved,
connecting the behavior of fluctuations of global and partial
observables. This theorem is briefly formulated in the Ab-
stract and its mathematically rigorous formulation is given in
Sec. III. The direct interrelation between the thermodynamic
behavior of fluctuations and stability is emphasized. It is also
shown that the stability of statistical systems is intricately
connected with the notions of symmetry breaking and en-
semble equivalence.
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II. FLUCTUATIONS OF OBSERVABLES AND STABILITY

In quantum statistical mechanics, observable quantities
are represented by self-adjoint operators from the algebra of
observables. As is explained in Sec. I, only extensive observ-
ables are considered in the paper. Fluctuations of the observ-
able quantities are characterized by the related operator dis-

persions. Let Â be an operator representing an extensive
observable quantity. Its dispersion is

�2�Â� � �Â2� − �Â�2, �1�

where the angle brackets, as usual, denote statistical averag-
ing.

The dispersions of the operators, representing extensive
observables, are directly connected with the associated sus-
ceptibilities, which can be measured. Thus, the fluctuations
of the Hamiltonian H, quantified by its dispersion �2�H�,
define the specific heat

CV �
1

N
� �E

�T
	

V
=

�2�Ĥ�
NT2 , �2�

where E��H� is internal energy, N is the total number of
particles in the system of volume V, and T is temperature.
Here and in what follows, the Boltzman constant is set to
unity, kB�1. The fluctuations of the number of particles are

described by the dispersion �2�N̂� of the number-of-particle

operator N̂, yielding the isothermal compressibility

�T � −
1

V
� �V

�P
	

T
=

�2�N̂�
N�T

, �3�

in which P is pressure, N��N̂�, and ��N /V is the average
particle density. In magnetic systems, with the Zeeman inter-
action −	0
iB ·Si of the operator spins Si with an external
magnetic field B, the fluctuations of the magnetization M�

��M̂�� are described by the dispersion �2�M̂�� of the mag-

netization operator M̂��	0
i=1
N Si

�, which results in the lon-
gitudinal magnetic susceptibility


� �
1

N
� �M�

�B�
	 =

�2�M̂��
NT

. �4�

In the notation used above, 	0=��S with �S being the gyro-
magnetic ratio for a particle of spin S. In what follows, we
shall use the system of units setting to unity the Planck con-
stant ��1.

The specific heat �2�, isothermal compressibility �3�, or
magnetic susceptibility �4� are the examples of the suscepti-
bilities associated with the fluctuations of observables. These
thermodynamic characteristics are readily measured in ex-
periments. At the points of phase transitions, the susceptibili-
ties can diverge, since such points are the points of instabil-
ity. But for the stable equilibrium system, the susceptibilities
are always positive and finite for all N, including the ther-
modynamic limit, when N→�, V→�, so that ��N /V
→const. In principle, it is admissible to imagine the situa-
tion, when a phase transition occurs not merely at a point but
in a finite region of a thermodynamic variable �7�, inside

which region the system remains unstable and displays a
divergent susceptibility. Such a case, however, is quite mar-
ginal, and rarely, if ever, happens for real statistical systems.
In any event, as soon as the phase transition is over, so that
the system becomes stable, all susceptibilities go finite.

The following picture summarizes the above consider-
ation. The extensive observables of a statistical system are
represented by Hermitian operators. The fluctuations of an

observable, represented by an operator Â, are quantified by

the operator dispersion �2�Â�, whose ratio �2�Â� /N to the
total number of particles characterizes the associated suscep-
tibility. For a stable system, the latter must be semipositive
and finite, while if it is divergent or negative, the system is
unstable. This can be formulated as a necessary stability con-
dition

0 
�2�Â�

N
� � . �5�

The ratio �2�Â� /N plays the role of a generalized suscepti-

bility, related to the operator Â. Examples of condition �5�
are the stability conditions on the specific heat �2�, isother-
mal compressibility �3�, and magnetic susceptibility �4�, ac-
cording to which

0  CV � �, 0  �T � �, 0  
� � � . �6�

These thermodynamic characteristics are usually strictly
positive at finite temperature, becoming zero only at zero
temperature.

In this way, the dispersion of the operator Â, representing
an extensive observable, has to be proportional to the num-
ber of particles

�2�Â� � N . �7�

Then the dispersion is called thermodynamically normal. The
thermodynamic limit is assumed here, so that N�1. When

Eq. �7� is not satisfied, so that �2�Â��N� with ��1, the
dispersion is called thermodynamically anomalous. Respec-
tively, the fluctuations of the related observable, character-

ized by the dispersion �2�Â�, are termed thermodynamically
normal, provided Eq. �7� is valid, and they are named ther-
modynamically anomalous if Eq. �7� does not hold.

In stable systems, the fluctuations of observables are al-
ways normal, and the corresponding susceptibilities are fi-
nite. These susceptibilities can be measured in experiment,
either directly or through other measurable quantities. For
example, the isothermal compressibility can be measured
through the sound velocity

s2 �
1

m
� �P

��
	

T
=

1

m��T
, �8�

where m is the particle mass. The compressibility can also be
found from the central value of the structural factor

S�0� =
T

ms2 = �T�T. �9�

And the structural factor
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S�k� = 1 + �� �g�r� − 1�e−ik·rdr , �10�

in which g�r� is the pair correlation function, can be mea-
sured in scattering experiments.

III. THEOREM ON TOTAL FLUCTUATIONS

In some cases, the operators of observables have the form
of the sum

Â = 

i

Âi �11�

of self-adjoint terms Âi. As has been stressed above, we con-
sider here only extensive observables, such that the statistical

average �Â� is proportional to the total number of particles N,

when the thermodynamic limit N→� is implied. All parts Âi

are assumed to have the same dimension as Â and also to be

the operators of extensive observables, so that �Âi��N. For

example, Â1= K̂ and Â2=Ŵ could be kinetic and potential
energies for a system of N particles. Then, Eq. �11� would

give the Hamiltonian Ĥ= K̂+Ŵ. Or one can consider the op-

erator of the number of particles N̂= N̂0+ N̂1 as a sum �11�
composed of the operators of condensed particles N̂0 and of

noncondensed particles N̂1 for a system with a Bose-Einstein
condensate. For each of the terms, one may consider partial

fluctuations quantified by the dispersions �2�Âi�. Then, of the
principal interest is the problem how the partial dispersions

�2�Âi� are correlated with the total dispersion �2�Â�? For
instance, could it be that some of the partial dispersions are
thermodynamically anomalous, while the total dispersion re-
mains thermodynamically normal, so that the system as a
total stays stable? The answer to such questions is given by
the following theorem.

Theorem. Let the operator Â of an extensive observable
quantity be represented as a sum of linearly independent self-

adjoint operators Âi, being of the same dimension and also

representing extensive observables, such that �Âi��N in the

thermodynamic limit. Then, the global dispersion �2�Â� is

thermodynamically anomalous, so that �2�Â��N� with �
�1, if and only if at least one of the partial dispersions

�2�Âi� is thermodynamically anomalous. The power � in the

dependence �2�Â��N�, as N→�, is defined by the largest

power of all partial dispersions �2�Âi�. Conversely, the glo-

bal dispersion �2�Â� is thermodynamically normal, such that

�2�Â��N in the thermodynamic limit, if and only if all par-

tial dispersions �2�Âi� are thermodynamically normal.
Proof. First, let us note that it is meaningful to consider

only linearly independent terms in the sum �11�, since in the
opposite case, when some of the terms are linearly depen-
dent, it is straightforward to express one of them through the
others, so that to reduce the number of terms in sum �11�. For
concreteness, in the following proof, the representatives of

observables are called operators, which assumes the case of a
quantum system. Of course, the same argumentation is valid
for classical systems as well, for which one just has to re-
place the term “operator” by the term “classical random vari-
able.”

The dispersion for the operator sum �11� can be written as

�2�Â� = 

i

�2�Âi� + 2

i�j

cov�Âi,Âj� , �12�

where the covariance

cov�Âi,Âj� �
1

2
�ÂiÂj + ÂjÂi� − �Âi��Âj� �13�

is employed. The latter enjoys the symmetry property

cov�Âi,Âj� = cov�Âj,Âi� .

The dispersions are, by definition, semipositive, while the
covariances can be positive as well as negative.

It is sufficient to prove the theorem for the sum of two
operators, when

�2�Âi + Âj� = �2�Âi� + �2�Âj� + 2 cov�Âi,Âj� . �14�

This follows from the simple fact that any sum of terms more
than two can always be redefined as a sum of two new terms.
We assume that in Eq. �14�, where i� j, both terms are op-
erators but not classical functions. If one of the terms were
just a classical function, then we would have a trivial equal-
ity

�2�Âi + const� = �2�Âi� ,

with the left-hand and right-hand sides being simultaneously
either thermodynamically normal or anomalous.

The elements

�ij � cov�Âi,Âj� , �15�

having the properties �ii=�2�Âi��0 and �ij =� ji, form the
covariance matrix ��ij�. This matrix is symmetric. For a set
of arbitrary real-valued numbers xi, with i=1,2 , . . . ,n, where
n is an integer, one has

�

i=1

n

�Âi − �Âi��xi�2� = 

i,j=1

n

�ijxixj � 0. �16�

The right-hand side of equality �16� is a semipositive qua-
dratic form. The theory of quadratic forms �8� tells us that a
quadratic form is semipositive if and only if all principal
minors of its coefficient matrix are non-negative. Thus, the
sequential principal minors of the covariance matrix ��ij�,
with i , j=1,2 , . . . ,n, are all non-negative. In particular,

�ii� j j − �ij� ji � 0.

This, because of the symmetry �ij =� ji, takes the form

�ij
2  �ii� j j .

Hence, the correlation coefficient
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�ij �
�ij

��ii� j j

�17�

possesses the property

�ij
2  1.

The equality �ij
2 =1 holds true if and only if Âi and Âj are

linearly dependent. The sufficient condition is evident, since

if Âj =a+bÂi, with a and b being any real numbers, then
�ij =b�ii and � j j =b2�ii, thence �ij =b / �b�, from where �ij

2

=1. To prove the necessary condition, let us assume that
�ij

2 =1. Therefore, �ij = ±1. Let us consider the dispersion

�2� Âi

��ii

±
Âj

�� j j

	 = 2�1 ± �ij� � 0.

The value �ij =1 is possible then and only then, when

�2� Âi

��ii

−
Âj

�� j j

	 = 0.

The dispersion can be zero if and only if

Âi

��ii

−
Âj

�� j j

= const,

which implies that the operators Âi and Âj are linearly de-
pendent. In the same way, the value �ij =−1 is possible if and
only if

�2� Âi

��ii

+
Âj

�� j j

	 = 0.

And this is admissible then and only then, when

Âi

��ii

+
Âj

�� j j

= const,

which again means the linear dependence of the operators Âi

and Âj. As far as these operators, by assumption, are linearly
independent, one has

�ij
2 � 1. �18�

This inequality is equivalent to

�ij
2 � �ii� j j ,

which, employing notation �15�, becomes

�cov�Âi,Âj��2 � �2�Âi��2�Âj� . �19�

Now, equality �14� can be represented as

�2�Âi + Âj� = �ii + � j j + 2�ij
��ii� j j , �20�

where, as is shown above, ��ij��1. Altogether, there can oc-
cur no more than four following cases. First, both partial

dispersions �ii=�2�Âi� and � j j =�2�Âj� are normal, so that
�ii�N and � j j �N. Then, from Eq. �20�, it is obvious that the

total dispersion �2�Âi+ Âj��N is also normal. Second, one of

the partial dispersions, say �ii�N, is normal, but another one
is anomalous, � j j �N�, with ��1. From Eq. �20�, using the

inequality �1+�� /2��, one has �2�Âi+ Âj��N�. That is, the
total dispersion is anomalous, with the same power � as � j j.
Third, both partial dispersions are anomalous, such that �ii
�N�i and � j j �N�j with different powers, say 1��i�� j.
Then Eq. �20�, with taking account of the inequality ��i

+� j� /2�� j, shows that �2�Âi+ Âj��N�j. Hence, the total
dispersion is also anomalous, with the power � j of the largest
partial dispersion � j j. Fourth, both partial dispersions are
anomalous, �ii�ci

2N� and � j j �cj
2N�, where ci�0 and cj

�0, with the same power �. In that case, Eq. �20� yields

�2�Âi+ Âj�=cijN
�, where

cij � �ci − cj�2 + 2cicj�1 + �ij� � 0,

which is strictly positive in view of inequality �18�. That is,
the total dispersion is anomalous, having the same power �
of N as both partial dispersions. After listing all admissible
cases, we see that the total dispersion is anomalous if and
only if at least one of its partial dispersions is anomalous,
with the power of N of the total dispersion being equal to the
largest power of partial dispersions. Conversely, the total dis-
persion is normal if and only if all its partial dispersions are
normal. This concludes the proof of the theorem.

This theorem was, first, announced, without proof, in Ref.
�9�. The proof, presented above, is rather general, being valid
for arbitrary operators and statistical systems. The theorem
can be applied to any system. For instance, this can be a
multicomponent system, where the index i in Eq. �11� enu-
merates the components. In recent years, much attention is
given to systems with the Bose-Einstein condensate �see re-
view articles �10–12��. The problem of fluctuations in such
systems has received a great deal of attention, with a number
of papers claiming the existence of anomalous fluctuations
everywhere below the condensation point �see discussion in
Ref. �13��. In the following sections, the examples of Bose-
condensed systems will be considered. In addition to being
naturally separated into the condensed and noncondensed
parts, Bose systems can also display the coexistence of sev-
eral coherent topological modes �14–23�. Another possibility
is the coexistence of atoms in several internal states, which,
e.g., has been studied in collective Raman scattering �24�.

IV. IDEAL BOSE GAS

The uniform ideal Bose gas below the condensation tem-
perature is known to exhibit anomalous number-of-particle
fluctuations �25,26�. Here, this case will be briefly recalled
for the purpose of illustrating the above theorem.

The condensation temperature of the ideal uniform Bose
gas is

Tc =
2�

m
 �

��3/2��2/3

, �21�

where ��3/2��2.612. Below this temperature, the number-
of-particle operator is the sum
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N̂ = N̂0 + N̂1 �22�

of the terms corresponding to condensed and noncondensed
particles, respectively,

N̂0 = a0
†a0, N̂1 = 


k�0
ak

†ak,

where ak
† and ak are the creation and annihilation operators of

Bose particles with momentum k.

The dispersion for the total number-of-particle operator N̂
can be calculated by means of the derivative over the chemi-
cal potential 	, so that

�2�N̂� = T
�N

�	
�	 → − 0� . �23�

The average number of particles N= �N̂� is given by the sum

N = N0 + N1 �24�

of condensed,

N0 � �a0
†a0� = �e−�	 − 1�−1, �25�

and noncondensed,

N1 � �N̂1� =
N

��T
3 g3/2�e�	� , �26�

particles, where 	→−0,

�T ��2�

mT
, � �

1

T
,

and the Bose-Einstein function is

gn�z� �
1

��n��0

� zun−1

eu − z
du .

Let us stress that the terms N̂0 and N̂1 in the sum �23� are
linearly independent. Differentiating the sum �24�, one has
the total dispersion

�2�N̂� = �2�N̂0� + �2�N̂1� , �27�

with the partial dispersions

�2�N̂0� = T
�N0

�	
, �2�N̂1� = T

�N1

�	
.

From Eqs. �25� and �26�, we find the dispersion for con-
densed particles,

�2�N̂0� = N0�1 + N0� , �28�

and for noncondensed particles,

�2�N̂1� =
N

��T
3 g1/2�e�	� , �29�

where 	→−0. As far as the existence of the Bose-Einstein
condensate presupposes that the number of condensed par-
ticles N0 is macroscopic, that is, proportional to N, then from
Eq. �28� and the relation N0�N�1, we have �2�N0��N2.

Expression �29� in the thermodynamic limit possesses an in-
frared divergence caused by the integral

g1/2�1� �
1

��
�

umin

� du

u3/2 ,

in which

umin =
kmin

2

2mT
, kmin �

1

L
,

with L�V1/3. Consequently, g1/2�1��L /�T. Thus, dispersion
�29� diverges at finite temperatures as

�2�N̂1� � �mT�2V4/3. �30�

In this way, both dispersions for the number-of-particle op-
erators of condensed as well as noncondensed particles are
anomalous

�2�N̂0� � N2, �2�N̂1� � N4/3.

As a result, the total dispersion �27� is also anomalous,

�2�N̂��N2, with the power of N given by �2�N̂0�.
The anomalous dispersion �2�N̂� leads, according to Eq.

�3�, to the divergence of the isothermal compressibility, as
�T�N, everywhere below Tc, except T=0. But the system
with a divergent compressibility is not stable. Therefore, the
ideal uniform Bose gas below the condensation temperature
�21� is a pathological object, being unstable in the whole
region 0�TTc. In other words, such a gas does not exist
as a stable statistical system �13�.

It is worth emphasizing that the anomalous fluctuations of
the condensate can be cured by breaking gauge symmetry as
will be explained below. However the fluctuations of non-
condensed particles remain anomalous, with the dispersion
�2�N1��N4/3 in both ensembles, grand canonical as well as
canonical �25,26�. Therefore, the instability of the ideal uni-
form Bose gas below Tc is not an artifact caused by the
choice of an ensemble, but a property peculiar to this system.

V. INTERACTING BOSE GAS

There exists a popular myth that the number-of-particle
fluctuations of noncondensed particles in an interacting Bose
gas below Tc remain anomalous, corresponding to the disper-

sion �2�N̂1��N4/3, of the same type as that for the ideal Bose
gas �see discussion in Ref. �13��. If this were true, then ac-

cording to the theorem of Sec. III, the total dispersion �2�N̂�
would also be anomalous, with the power of N not smaller
than 4

3 . This would imply that the isothermal compressibility
diverges at least as �T�N1/3. Hence, the system as a whole
would be unstable. In turn, this would mean that there are no
stable statistical systems with the Bose-Einstein condensate.
Such a conclusion, of course, would be too radical, because
of which it is necessary to reconsider the procedure of cal-
culating the number-of-particle dispersions for the Bose-
condensed systems.

Let us consider a weakly interacting Bose gas at low tem-
peratures, when the Bogolubov theory �27–29� is applicable.
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The main points of this theory are as follows. One starts with
the standard Hamiltonian

H =� �†�r��−
�2

2m
− 		��r�dr

+
1

2
� �†�r��†�r����r − r����r����r�drdr� �31�

in terms of the Bose field operators ��r� and �†�r�. The
interaction potential is assumed to be symmetric, such that
��−r�=��r�, and soft, allowing for the Fourier transforma-
tion

��r� =
1

V



k

�ke
ik·r, �k =� ��r�e−ik·rdr .

The condensate is separated by means of the Bogolubov
shift

��r� = �0 + �1�r� , �32�

in which

�0 =
a0

�V
, �1�r� = 


k�0
ak�k�r� , �33�

and, keeping in mind a uniform system, the expansion is
over the plane waves �k�r�=eik·r /�V. The gauge symmetry
of the Hamiltonian �31� is broken by setting a0=�N0. As-
suming that N0�N, one omits from the total Hamiltonian the
terms of the third and fourth order with respect to the opera-
tors ak of noncondensed particles, where k�0. Retaining
only the terms up to the second order in ak, one gets the
quadratic Hamiltonian

H2 =
1

2
N��0 + 


k�0
�kak

†ak − 	N +
1

2 

k�0

�k�ak
†a−k

† + a−kak� ,

�34�

in which the notation for the quantities

�k �
k2

2m
+ ���0 + �k� − 	 �35�

and

�k � ��k �36�

is employed.
The quadratic Hamiltonian �34� is diagonalized by means

of the Bogolubov canonical transformation

ak = ukbk + v−k
* b−k

† ,

in which

uk
2 − vk

2 = 1, ukvk = −
�k

2�k
,

uk
2 =

��k
2 + �k

2 + �k

2�k
=

�k + �k

2�k
, vk

2 =
��k

2 + �k
2 − �k

2�k
=

�k − �k

2�k
,

and �k is the Bogolubov spectrum

�k = ��k
2 − �k

2. �37�

The condensate separation through the Bogolubov shift �32�
is meaningful only when the particle spectrum �37� touches
zero at k=0, which gives

	 = ��0. �38�

Thus, one comes to the Bogolubov Hamiltonian

HB = E0 + 

k�0

�kbk
†bk − 	N , �39�

with the ground-state energy

E0 =
1

2
N��0 −

1

2 

k�0

��k − �k� . �40�

Using the chemical potential �38�, for the spectrum �35�, one
has

�k =
k2

2m
+ ��k. �41�

With the diagonal Bogolubov Hamiltonian �39�, it is easy to
find the normal,

nk � �ak
†ak� , �42�

and anomalous,

�k � �aka−k� , �43�

averages. We have

nk =
�k

2�k
�1 + 2�k� −

1

2
�44�

and

�k = −
�k

2�k
�1 + 2�k� , �45�

where

�k � �bk
†bk� = �e��k − 1�−1. �46�

Now, let us turn to investigating the number-of-particle
fluctuations. In the Bogolubov approximation, the number-

of-particle operators for condensed N̂0 and noncondensed N̂1
particles are uncorrelated, so that

�N̂0N̂1� = �N0��N̂1� . �47�

Hence, their covariance

cov�N̂0,N̂1� = 0.

Therefore,

�2�N̂� = �2�N̂0� + �2�N̂1� . �48�

Calculating the dispersion �2�N̂1� for the number-of-
particle operator of noncondensed particles
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N̂1 = 

k�0

ak
†ak,

one has to work out the four-operator expression �ak
†akaq

†aq�
or, after involving the Bogolubov canonical transformation,
one needs to treat the four-operator terms �bk

†bkbq
†bq�. Such

four-operator products are reorganized by means of the Wick
decoupling, which yields

�2�N̂1� = 

k�0

��1 +
2m2ck

4

�k
2 	�k�1 + �k� +

m2ck
4

2�k
2 � . �49�

Here, the notation

ck ����k

m

for the effective sound velocity is used, which enters the
Bogolubov spectrum �37� as

�k =��ckk�2 + � k2

2m
	2

. �50�

Replacing in Eq. �49� the summation by integration, one
gets an infrared divergence of the type N�dk /k2. Limiting
here the integration by minimal kmin=1/L, with L�N1/3, one

gets �2�N̂1��N4/3, which is anomalous. Remaining in the
frame of the discrete wave vectors k does not save the situ-

ation, and the dispersion �2�N̂1� stands anomalous. But, as
follows from the theorem of Sec. III, the anomalous partial

dispersion yields the anomalous total dispersion �2�N̂�,
which in the present case is evident from Eq. �48�. As a
result, the compressibility �3� diverges as �T�N1/3, which
implies the instability of the system as a whole. Thus, one
would come to the strange conclusion that stable Bose-
condensed systems do not exist.

However, the conclusion on the appearance of anomalous
fluctuations in Bose systems, derived from Eq. �49�, is not
correct. The mistake here is in the following. A basic point of
the Bogolubov theory is the contraction of the total Hamil-
tonian �31� to the quadratic form �34�, omitting all terms of
the order higher than two with respect to the operators ak of
noncondensed particles. The Bogolubov theory is a second-
order theory with respect to ak. Being in the frame of a
second-order theory imposes the restriction of keeping only
the terms of up to the second order when calculating any
physical quantities, and omitting all higher order terms. In

working out the dispersion �2�N̂1�, one meets the fourth-
order terms with respect to ak. Such fourth-order terms are
not defined in the second-order approximation. The calcula-
tion of the fourth-order expressions in the second-order ap-
proximation is not self-consistent, i.e., it is incorrect.

A correct calculation of �2�N̂� in the frame of the Bogol-
ubov theory can be accomplished in the following way. By
invoking the relations �3�, �9�, and �10�, we have

�2�N̂� = N�1 + �� �g�r� − 1�dr� . �51�

The pair correlation function is

g�r12� =
1

�2 ��†�r1��†�r2���r2���r1�� , �52�

where r12=r1−r2.
For the field operators, one assumes the Bogolubov shift

�32�, which taking into account that in the thermodynamic
limit the condensate operator �0 becomes a classical number,
can be written as

��r� = � + �1�r� , �53�

where the first term is the Bogolubov order parameter

� = ���r�� = ��0� , �54�

which can be set as �=��0, with �0�N0 /V. Here � does not
depend on r for a uniform system under consideration.

The pair correlation function �52� can be simplified by
invoking the Wick decoupling. This, however, must be
handled with care. A delicate point is that the Wick decou-
pling and the Bogolubov shift �53� do not commute with
each other. In the present context, the Wick decoupling is
equivalent to the Hartree-Fock-Bogolubov approximation.
The latter does not commute with the Bogolubov shift. Thus,
accomplishing, first, the Bogolubov shift in the pair correla-
tion function �52�, and then using the Hartree-Fock-
Bogolubov approximation for the operators �1�r�, or, what is
the same, the Wick decoupling for the operators ak, with k
�0, we obtain

g�r12� = 1 +
2�0

�2 Re��1�r1,r2� + �1�r1,r2�� +
1

�2 ���1�r1,r2��2

+ ��1�r1,r2��2� . �55�

Here the Hartree-Fock-Bogolubov approximation for �1�r�
is employed, resulting in

��1
†�r1��1�r1��1�r2�� = 0,

because of the condition ��1�r��=0, and in

��†�r1��1
†�r2��1�r2��1�r1�� = �1

2 + ��1�r1,r2��2 + ��1�r1,r2��2.

The notation is used for the normal average

�1�r1,r2� � ��1
†�r2��1�r1�� �56�

and for the anomalous average

�1�r1,r2� � ��1�r2��1�r1�� �57�

in the real space. These averages are related, by means of the
Fourier transforms

�1�r1,r2� =� nke
ik·r12

dk

�2��3 , �1�r1,r2� =� �ke
ik·r12

dk

�2��3 ,

with the normal and anomalous averages �42� and �43�, re-
spectively, in the momentum space.

Note that function �55� possesses the correct limiting be-
havior

lim
r12→�

g�r12� = 1.

But, if one, first, would make the Hartree-Fock-Bogolubov
approximation for the operators ��r� and, after this, would
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substitute the Bogolubov shift �53�, then one would get an-
other correlation function with a wrong limiting behavior, as
is explained in the Appendix A. This is because the usage of
the Wick decoupling and Hartree-Fock-Bogolubov approxi-
mation for the operators, represented as sums of several
terms, is correct if and only if all terms in the sum possess
the same commutation relations. However, in the Bogolubov
shift �53�, the field operators ��r� and �1�r� do have the
same Bose commutation relations, but the term � does not
enjoy such relations. Consequently, the proper way of action
is to realize, first, the Bogolubov shift �53� and only after this
to invoke the Hartree-Fock-Bogolubov approximation for the
operators �1�r�. The inverse order, as is explained in the
Appendix A, is not correct.

For the pair correlation function �55�, we find

� �g�r� − 1�dr =
2�0

�2 lim
k→0

�nk + �k� +
1

�2 � �nk
2 + �k

2�
dk

�2��3 .

In the frame of the Bogolubov theory, we have to set �0=�
and to omit the terms of the order higher than two with
respect to the operators ak of noncondensed particles. This
means that the terms nk

2 and �k
2 are to be omitted. Therefore,

the number-of-particle dispersion �51� in the Bogolubov
theory is

�2�N̂� = N�1 + 2 lim
k→0

�nk + �k�� . �58�

Employing Eqs. �44�–�46�, we get

lim
k→0

�nk + �k� =
1

2
� T

mc2 − 1	 ,

where

c � lim
k→0

ck =���0

m
,

with

�0 � lim
k→0

�k =� ��r�dr .

Then dispersion �58� becomes

�2�N̂� =
T

mc2N , �59�

which is, of course, normal, as it should be for a stable sys-
tem. Respectively, the isothermal compressibility

�T =
�2�N̂�
�TN

=
1

�mc2 �60�

is finite.
According to the theorem of Sec. III, if the total disper-

sion �59� is normal, then both dispersions of the number-of-

particle operators for condensed, �2�N̂0�, as well as for non-

condensed, �2�N̂1�, particles must be normal. Anomalous
fluctuations can arise solely as a result of wrong calculations,
when, e.g., one considers the fourth-order terms nk

2 and �k
2 in

the second-order Bogolubov theory.

VI. SYSTEMS WITH CONTINUOUS SYMMETRY

It is easy to show that the same fictitious anomalous fluc-
tuations appear, not only for Bose systems, but for arbitrary
systems, when one treats the Hamiltonian in the second-
order approximation, but intends to calculate fourth-order
expressions. This immediately follows from the analysis of
susceptibilities for arbitrary systems with continuous sym-
metry, as has been done by Patashinsky and Pokrovsky �30�.
Following Ref. �30�, one may consider an operator Â= Â���,
which is a functional of a field �. Let this operator be rep-

resented as a sum Â= Â0+ Â1, where the first term is qua-

dratic in the field �, so that Â0��†�, while the second term

depends on the field fluctuations �� as Â1���†��. Let the
system Hamiltonian be taken in the hydrodynamic approxi-
mation, where only the terms quadratic in the field fluctua-

tions �� are retained. The dispersion �2�Â��N
 is propor-
tional to a longitudinal susceptibility 
. The latter is given by
the integral �C�r�dr over the correlation function C�r�
�g�r�−1, with g�r� being the pair correlation function. Cal-

culating �2�Â�, one meets the fourth-order term
���†����†���. For the quadratic hydrodynamic Hamil-
tonian, such fourth-order terms are decoupled by resorting to
the Wick theorem. Then one finds

C�r� �
1

r2�d−2� �61�

for any dimensionality d�2. Consequently,


 �� C�r�dr � N�d−2�/3

for 2�d�4. Hence, the dispersion is

�2�Â� � N
 � N�d+1�/3. �62�

For d=3, this gives �2�Â��N4/3, that is, the same anomalous

dispersion as �2�N̂� for Bose systems. But this implies that
the related susceptibility diverges as 
�N1/3, which tells that
the considered system is unstable. If this would be correct, it
would mean that there are no stable systems with continuous
symmetry. For instance, there could not exist magnetic sys-
tems, described by the Heisenberg Hamiltonian. Liquid he-
lium also could not exist as a stable system.

The existence or absence of anomalous fluctuations does
not depend on the statistical ensemble used. Thus, in the
frame of the same calculational procedure, the particle fluc-
tuations are the same, being either anomalous or normal,
depending on the chosen procedure, for all ensembles,
whether canonical, grand canonical, or microcanonical �31�.

It is worth emphasizing that such fictitious anomalous
fluctuations arise not just at a phase transition point, which
would not be surprising, but everywhere below this point, in
the whole region of existence of the considered system. That
is, everywhere below the phase transition points such sys-
tems would not be stable. As is evident, such a strange con-
clusion is physically unreasonable. Fortunately, the explana-
tion for the occurrence of anomalous fluctuations is rather
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simple: They arise solely due to an incorrect calculational
procedure, when the fourth-order terms are treated by a
second-order theory, such as the hydrodynamic approxima-
tion. No anomalous fluctuations happen, if all calculations
are done self-consistently, being defined in the frame of the
given approximation.

Another popular way of incorrectly obtaining thermody-
namically anomalous particle fluctuations for systems with
continuous symmetry is as follows. One uses the representa-
tion

��r� = ei�̂�r��n̂�r� �63�

for the field operator, in which n̂�r���†�r���r� is the opera-
tor of particle density and �̂�r� is the phase operator. The
latter is assumed to be Hermitian in order to preserve the
correct definition of the density operator,

�†�r���r� = �n̂�r�e−i�̂+�r�+i�̂�r��n̂�r� = n̂�r� .

It is easy to show that from the representation �63�, it follows
that the density and phase operators are canonically conju-
gated, satisfying the commutation relation

�n̂�r�,�̂�r��� = i��r − r�� .

For the first-order correlation function, one has

��†�r���0�� = ��n̂�r�n̂�0�exp�− i��̂�r� − �̂�0���� .

Then one assumes that the temperature is asymptotically low,
T→0, such that there are no density fluctuations, and one
can replace the operator n̂�r� by its average ��r���n̂�r��.
This is equivalent to the usage, instead of the representation
�63�, of the representation

��r� = ���r�ei�̂�r�. �64�

One also supposes that the phase fluctuations are very small,
so that one can employ the following averaging:

�exp�− i��̂�r� − �̂�0���� = exp�−
1

2
���̂�r� − �̂�0��2�� .

�65�

As a result, the first-order correlation function reduces to

��†�r���0�� = ��r�exp�−
1

2
���̂�r� − �̂�0��2�� .

Treating �̂�r� as a small quantity, one also expands the ex-
ponentials in powers of �̂�r�. Similarly, one treats the
second-order correlation functions. Finally, one comes to the
same expressions as in Eqs. �61� and �62�, with the thermo-

dynamically anomalous fluctuations, �2�N̂1��N4/3, for the
three-dimensional space.

The main mistake in such calculations is the same as has
been made above. All calculations have been based on the
assumption that both the density and phase fluctuations are
rather weak, so that the hydrodynamic approximation could
be invoked. The latter implies that all statistical averages are
treated in the hydrodynamic approximation, with a Hamil-
tonian quadratic in the operators. For instance, it is well

known �32� that Eq. �65� is valid solely for quadratic Hamil-

tonians. For finding �2�N̂1�, one needs to consider the fourth-
order terms in phase operators. Of course, there is no sense
in calculating the fourth-order terms in the frame of a
second-order theory, such as the hydrodynamic approxima-
tion.

Moreover, the representations �63� and �64�, as such, are
principally incorrect. This is shown in the Appendix B. A
correct definition of the phase operator requires a much more
elaborate technique, as can be inferred from the review ar-
ticles �33–36�. Since the representations �63� and �64�, actu-
ally, do not exist, all conclusions derived on their basis, even
involving no further approximations, are not reliable.

VII. BREAKING OF GAUGE SYMMETRY

In Sec. IV, considering the ideal uniform Bose gas, we
found that its particle fluctuations are thermodynamically

anomalous, with the corresponding dispersion �2�N̂��N2.
This anomaly is due to the condensate fluctuations, since

�2�N̂0��N2. Really, for an ideal uniform gas, one has

�2�N̂� = 

k

nk�1 + nk� . �66�

From here, separating the terms with k=0 and k�0, we get

�2�N̂0� = N0�1 + N0�, �2�N̂1� = 

k�0

nk�1 + nk� .

Since N0�N, we find �2�N̂0��N2.
The situation can be made even more dramatic by gener-

alizing it to the case of interacting particles. To this end, let
us consider an interacting system that can be treated by per-
turbation theory starting with a mean-field approximation,
such as the Hartree-Fock approximation. In the frame of the
latter, the particle dispersion can be shown �37� to have the
same form as in Eq. �66�. Then, irrespectively of the concrete
expression for the momentum distribution of particles nk, the

global dispersion �2�N̂� will be thermodynamically anoma-

lous because of the anomalous term �2�N̂0��N2. Hence, one
could conclude that all systems with the Bose-Einstein con-
densate would be unstable.

One often states that the appearance of this anomaly is the
defect of the grand canonical ensemble. However, this is not
correct. As is mentioned in Sec. IV, the anomalous conden-
sate fluctuations are fictitious and can be removed by break-
ing the gauge symmetry.

Hohenberg and Martin �38� noticed that the appearance of
such fictitious divergences is a common feature of theories
possessing gauge symmetry, but breaking the latter would
eliminate the divergences resulting from the condensate fluc-
tuations. Ter Haar �25� showed explicitly how the anomalous
condensate fluctuations can be removed after breaking the
gauge symmetry for an ideal uniform Bose gas. In the
present section, we demonstrate that, in general, the gauge-
symmetry breaking eliminates the anomalous condensate
fluctuations for arbitrary systems, whether interacting or not.

A known method for lifting a system symmetry of any
nature is the method of infinitesimal sources, introduced by
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Bogolubov �29,39�. There are also several other methods of
symmetry breaking, as is reviewed in Ref. �40�. In the case
of gauge symmetry, one has to be cautious by chosing the
way of its breaking. The standard method of infinitesimal
sources may not always lead to the desired symmetry break-
ing, as is shown by a counterexample in the Appendix C.

To break the gauge symmetry in a Bose system, one has
to resort to the Bogolubov shift �29,39�. The latter, keeping
in mind the most general statistical system, whether equilib-
rium or nonequilibrium, uniform or nonuniform, writes as

��r,t� = ��r,t� + �1�r,t� , �67�

where t is time. The first term here is the condensate wave
function, assumed to be not identically zero in the presense
of the Bose-Einstein condensate. The second term in Eq. �67�
is the field operator of noncondensed particles, satisfying the
same Bose commutation relations as ��r , t�. The correct
separation of condensed and noncondensed particles presup-
poses the orthogonality condition

� �*�r,t��1�r,t�dr = 0, �68�

which exculdes the double counting of the degrees of free-
dom. In what follows, just for brevity, we shall write ��r�
instead of ��r , t�, understanding that, generally, the time
variable t does enter the dependence of the field operator,
��r�=��r , t�.

For the theory of Bose systems, it is extremely important
to specify the spaces of states, which the field operators are
defined on. Thus, the field operators ��r� and �†�r� are de-
fined on the Fock space F��� generated by the operator
�†�r�. This means the following �41�: There exists a vacuum
state �0�, for which

��r��0� = 0. �69�

The Fock space F��� is the space of all states

� = 

n=0

�
1

�n!
� fn�r1, . . . ,rn��

i=1

n

�†�r1�dri�0� ,

in which fn�r1 , . . . ,rn� is a square-integrable function sym-
metric with respect to the permutation of any pair of its vari-
ables.

It is easy to notice that the state �0�, which is a vacuum
state for ��r�, is not a vacuum for �1�r�, since

�1�r��0� = − ��r��0� � 0.

Consequently, there should exist another state �0�1 satisfying
the condition

�1�r��0�1 = 0, �70�

being a vacuum for �1�r�. In turn, the state �0�1, which is a
vacuum for �1�r�, is not a vacuum for ��r�, as far as

��r��0�1 = ��r��0�1 � 0.

The Bogolubov shift �67� is a particular case of canonical
transformations �42�. The operators ��r� and �1�r� can be
connected with each other by means of the transformation

Ĉ � exp�� ��*�r���r� − ��r��†�r��dr� �71�

and its inverse

Ĉ−1 = exp�−� ��*�r���r� − ��r��†�r��dr� . �72�

Using these transformations, one has

��r� = Ĉ�1�r�Ĉ−1 �73�

and

�1�r� = Ĉ−1��r�Ĉ . �74�

Then it becomes clear that the vacuum for �1�r� is

�0�1 = Ĉ−1�0� . �75�

The vacua �0� and �0�1 are mutually orthogonal. This can
be shown by employing the Baker-Hausdorff formula, which

for two operators Â and B̂, whose commutator �Â , B̂� is pro-
portional to the unity operator, reads as

eÂ+B̂ = eÂeB̂ exp�−
1

2
�Â,B̂�	 .

Using this for transformation �72�, we have

Ĉ−1 = exp�� ��r��†�r�dr�exp�−� �*�r���r�dr�
�exp�−

1

2
� ���r��2dr� . �76�

Acting on the vacuum �0�, we find

Ĉ−1�0� = exp�−
1

2
� ���r��2dr�exp�� ��r��†�r�dr��0� .

�77�

This is nothing but the coherent state �43�, being the eigen-
state of the destruction operator,

��r���� = ��r���� , �78�

and having in the coordinate representation �44� the form

��� = �0 exp�� ��r��†�r�dr��0� , �79�

with the normalization factor

��0� = exp�−
1

2
� ���r��2dr� .

Respectively, the condensate wave function

��r� = �����r����

is nothing but the coherent field related to the coherent state
���.

In this way, the vacuum �75� is the coherent state �79�,
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�0�1 = Ĉ−1�0� = ��� . �80�

The scalar product of the vacua �0� and �0�1 is

�0�0�1 = �0��� = exp�−
1

2
� ���r��2dr� . �81�

By its definition, the condensate wave function gives the
condensate density

�0�r� � ���r��2. �82�

The number of condensed particles

N0 =� �0�r�dr , �83�

in the presence of the condensate, is not zero, but is macro-
scopic in the sense that N0�N→�. Therefore, the scalar
product

�0�0�1 = exp�−
1

2
N0	 �84�

becomes zero in the thermodynamic limit,

�0�0�1 � 0 �N → �� . �85�

This tells that the vacua �0� and �0�1 are asymptotically or-
thogonal. The Fock spaces F��� and F��1�, generated from
the related vacua, are orthogonal to each other, except just
the sole state �0�1= ���, which is the vacuum for F��1� and
the coherent state, defined by Eq. �78�, in F���. However,
having the sole common state for two infinite-dimensional
spaces means the intersection of zero measure. Moreover, the
influence of this intersection is eliminated by means of the
orthogonality condition �68�.

Thus, there are two different vacua �0� and �0�1 and two
mutually orthogonal Fock spaces F��� and F��1�, generated
by the field operators �† and �1

†, respectively. The operator
�71� transforms F��1� into F���, while the operator �72�
transforms F��� into F��1�. There is no self-adjoint operator

Ĉ+ that would be defined on the same space as Ĉ. Therefore,

the operator Ĉ is nonunitary and the transformations �73� and
�74� cannot be treated as unitary. The field operators � and
�1 are defined on different spaces. One says that such opera-
tors realize unitary nonequivalent operator representations of
canonical commutation relations �45�.

Breaking the gauge symmetry by the Bogolubov shift
�67�, one, actually, passes from the Fock space F��� to the
space F��1�. Since the left-hand and right-hand sides of Eq.
�67� are defined on different spaces, this equation should be
understood as a transformation

��r� → ��r� + �1�r� .

Separating the zero-momentum mode for a uniform Bose
gas, with replacing this term by a nonoperator quantity,

�0 =
a0

�V
→ ��0,

as has been done in Sec. V, is mathematically equivalent to
the Bogolubov shift �46�. The representation of the operators
of observables, expressed through the field operators �1, and
defined on the Fock space F��1�, can be called the Bogol-
ubov representation.

In the Bogolubov representation, the operator of con-
densed particles, according to Eqs. �82� and �83�, is a non-

operator quantity, N̂0=N0. Hence, the dispersion of the latter
is zero, �2�N0�=0. Consequently, the dispersion of the total
number-of-particle operator

�2�N̂� = �2�N̂1�

is completely defined by the dispersion of the operator N̂1 of
noncondensed particles. Thus, the anomalous N2 dispersion
of the condensate particles is removed in the Bogolubov rep-
resentation.

Considering the ideal uniform Bose gas of Sec. IV in the
Bogolubov representation, we do not meet the N2-anomalous
condensate fluctuations. Nevertheless, particle fluctuations,

characterized by the dispersion �2�N̂1��N4/3, remain ther-
modynamically anomalous. That is, this gas, anyway, is un-
stable. This conclusion does not depend on whether the
grand canonical or canonical ensemble has been used. Of
course, in the latter, where the total number of particles is
fixed, the related dispersion is not defined. However, one can
calculate the compressibility

�T = −
1

V
� �P

�V
	

TN

−1

=
1

V
� �2F

�V2	
TN

−1

,

where F is free energy. For the ideal uniform Bose gas below
Tc, one has �2� �P /�V=0, hence, �T→�, which implies in-
stability. The latter is an intrinsic feature of the uniform ideal
Bose gas �13�. Including particle interactions stabilizes the
gas, as is shown in Sec. V. The ideal Bose gas can also be
stabilized by trapping it in an external confining potential,
such as the harmonic potential �47,48�, though not all power-
law potentials are able to stabilize the system �49�.

The message of this section is that accurately defining the
symmetry properties of the given system helps to avoid the
appearance of unphysical instabilities. Although there also
exist systems, such as the ideal uniform Bose-condensed gas,
which are intrinsically unstable.

VIII. NOTION OF REPRESENTATIVE ENSEMBLES

The consideration of Sec. VII demonstrates the impor-
tance of accurately defining the system under investigation.
It is not sufficient to chose a statistical ensemble, but often it
is also necessary to formulate additional conditions specify-
ing the features of the given system, thus, avoiding the ap-
pearance of spurious instabilities. For instance, one can take
the grand canonical ensemble without breaking the gauge
symmetry or one may employ the grand canonical ensemble
with the gauge symmetry breaking. This means that, in gen-
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eral, there may exist not just the sole grand canonical en-
semble or the sole canonical one, but there can exist several
such ensembles. This problem of the ensemble nonunique-
ness is just another way of formulating the problem of the
nonuniqueness of the Fock space and of the existence of
unitary nonequivalent operator representations, which is ex-
plained in Sec. VII.

Thus, for the correct description of a physical system, it is
necessary to equip the chosen statistical ensemble by addi-
tional conditions required for accurately taking account of
the system features. Only such an equipped ensemble will
correctly represent the considered system, that is, will be a
representative ensemble.

The idea of the representative ensembles goes back to
Gibbs himself �50�, who mentioned the necessity of taking
into account all additional information known about the con-
sidered system, such as the system symmetry, the existence
of integrals of motion, and so on. The importance of employ-
ing representative ensembles for an adequate description of
statistical systems was emphasized by ter Haar �51,52�. A
detailed discussion of mathematical techniques, required for
the correct definition of representative ensembles, can be
found in the review papers �40,53�. In the language of re-
duced density matrices, the latter have to satisfy specific con-
straints in order to correctly represent a given statistical sys-
tem �54�.

Systems, exhibiting Bose-Einstein condensation, serve as
a very good example demonstrating the importance of taking
into account their specific features in order to correctly de-
scribe their behavior. Rich properties of these systems are
required to be very attentive in formulating the correspond-
ing representative ensemble. Forgetting to impose the appro-
priate constraints, specifying the system properties, may lead
to self-inconsistent calculations and the appearance of spuri-
ous instabilities. In Sec. V, the example was given of a
weakly interacting equilibrium uniform Bose gas. Now, we
shall formulate a general approach to Bose systems with ar-
bitrarily strong interactions, being, in general, nonuniform
and not necessarily equilibrium. We shall stress the con-
straints that are compulsory for defining a self-consistent
theory, which, for equilibrium systems, results in a represen-
tative ensemble, free of fictitious instabilities.

First of all, as is explained in Sec. VII, we have to break
the gauge symmetry by means of the Bogolubov shift, re-
placing the field operator ��r , t�, acting in the Fock space
F���, by the operator

�̃�r,t� � ��r,t� + �1�r,t� , �86�

defined on the Fock space F��1�. In what follows, we shall
again omit the time variable in order to simplify the notation.
The first term in the right-hand side of Eq. �86� is the con-
densate wave function and the second term is the field op-
erator of noncondensed particles. The replacement ��r�
→ �̃�r� yields to the passage from the operator representation
on the Fock space F��� to the unitary nonequivalent operator
representation, the Bogolubov representation, on the space
F��1� only if the condensate wave function ��r , t� is not
identically zero.

The energy operator has now to be expressed through the
field operators �86�, which yield the Hamiltonian

Ĥ =� �̃†�r��−
�2

2m
+ U	�̃�r�dr

+
1

2
� �̃†�r��̃†�r����r − r���̃�r���̃�r�drdr�, �87�

in which U=U�r , t� is an external field. The corresponding
Lagrangian is

L̂ �� �̃†�r�i
�

�t
�̃�r�dr − Ĥ . �88�

It is important to stress that contrary to a system without
condensate, where there is just one field operator variable �,
in a Bose-condensed system, there appear two variables �

and �1 or one can take as two variables � and �̃. The con-
densate wave function defines the condensate density �82�.
The operator of the total number of particles

N̂ =� �̃†�r��̃�r�dr �89�

is expressed through �̃. Respectively, there are two normal-
ization conditions. One condition is for the condensate wave
function normalized to the number of condensed particles

N0 =� ���r��2dr . �90�

And another normalization condition is for �̃ normalized to

the total number of particles N= �N̂�, i.e.,

N =� ��̃†�r��̃�r��dr . �91�

Here and everywhere in this section, the angle brackets im-
ply the averaging over the Fock space F��1�.

Hamiltonian �87�, with the field operator �86�, contains
the terms linear in �1, because of which the average ��1�
may be nonzero. However, a nonzero ��1� would, in general,
lead to the nonconservation of quantum numbers, such as
spin and momentum, which would be unphysical. Therefore,
it is necessary to impose the constraint for the conservation
of quantum numbers,

��1�r�� = 0. �92�

In this way, three conditions are to be valid for a Bose-
condensed system, two normalization conditions �90� and
�91�, and the quantum-number conservation constraint �92�.

The most general procedure of deriving the equations of
motion is by looking at the extrema of the action, under the
given additional conditions. In our case, the effective action
is
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A��,�1� =� �L̂ + 	0N0 + 	N̂ + �̂�dt . �93�

Here, L̂ is the Lagrangian �88�. The second and third terms in
the integral �93� preserve the normalization conditions �90�
and �91�. And the role of the term

�̂ �� ���r��1
†�r� + �*�r��1�r��dr �94�

is to satisfy the quantum-number conservation constraint
�92�. The Lagrange multipliers ��r� have to be chosen so that
to cancel, in Eq. �87�, the terms linear in �1. The absence of
such linear terms in the Hamiltonian, as is known �42�, is
necessary and sufficient for the validity of condition �92�. By
introducing the effective grand Hamiltonian

H��,�1� � Ĥ − 	0N0 − 	N̂ − �̂ �95�

and the resulting Lagrangian

L��,�1� =� �*�r�i
�

�t
��r� + �1

†�r�i
�

�t
�1�r��dr − H��,�1� ,

�96�

the effective action �93� can be rewritten as

A��,�1� =� L��,�1�dt . �97�

According to the standard prescription, the equations of mo-
tion are obtained from the variational principle determining
the extremum of the action functional �97�. These variational
equations are

�A��,�1�
��*�r,t�

= 0, �98�

where, for generality, the time variable is written explicitly,
and

�A��,�1�
��1

†�r,t�
= 0. �99�

From Eqs. �95�–�97�, it follows that Eqs. �98� and �99� are
identical to the variational equations

i
�

�t
��r,t� =

�H��,�1�
��*�r,t�

, �100�

with the effective grand Hamiltonian �95�, and

i
�

�t
�1�r,t� =

�H��,�1�
��1

†�r,t�
. �101�

Explicitly, Eq. �100� is

i
�

�t
��r,t� = �−

�2

2m
+ U − �	��r�

+� ��r − r������r���2��r� + X̂�r,r���dr�,

�102�

where ��	0+	 and again, for short, the time dependence is
omitted. Equation �101� yields

i
�

�t
�1�r,t� = �−

�2

2m
+ U − 		�1�r� +� ��r − r��

�����r���2�1�r� + �*�r����r��1�r��

+ ��r����r��1
†�r�� + X̂�r,r���dr�. �103�

Here the notation

X̂�r,r�� � �1
†�r���1�r����r� + �1

†�r����r���1�r�

+ �*�r���1�r���1�r� + �1
†�r���1�r���1�r�

�104�

is used. Averaging Eq. �102�, we obtain the equation for the
condensate wave function

i
�

�t
��r,t� = �−

�2

2m
+ U − �	��r� +� ��r − r�����r����r�

+ �1�r,r����r�� + �1�r,r���*�r��

+ ��1
†�r���1�r���1�r���dr�, �105�

in which the total density of particles

��r� = �0�r� + �1�r�

is the sum of the condensate density �82� and of the density
of noncondensed particles

�1�r� � ��1
†�r��1�r��;

also, the notation is used for the normal density matrix

�1�r,r�� � ��1
†�r���1�r�� ,

and the so-called anomalous density matrix

�1�r,r�� � ��1�r���1�r�� ,

which is nonzero because of the broken gauge symmetry.
It is not our goal to study here particular consequences of

the approach sketched above. The sole aim of the example of
this section is to illustrate the way of constructing a repre-
sentative ensemble for a rather nontrivial system. This is
done by accurately specifying the basic system properties,
such as the broken gauge symmetry, normalization condi-
tions, and the quantum-number conservation condition. Fol-
lowing the most general procedure of action variation, under
the specified conditions, one automatically obtains an effec-
tive Hamiltonian and the related exact equations of motion.
It is possible to show �37� that the latter guarantee the correct
behavior for the spectrum of collective excitations, the valid-
ity of all conservation laws, and the absence of unphysical
instabilities.
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It may happen in some lower-order approximations that
there is no need to invoke all of the conditions discussed
above. This, for instance, occurs in the Bogolubov approxi-
mation of Sec. IV. In this approximation, one assumes that
N0→N, hence 	0→0. Also, for a uniform gas, the Hamil-
tonian term of the first order in �1 vanishes itself, while the
terms of the third and fourth order in �1 are neglected in the
Bogolubov second-order approximation. Because of this,
there is no necessity of introducing the term �94�. However,
all these conditions are to be taken into account when going
to higher-order approximations. In the other case, the defined
ensemble may occur to be nonrepresentative, which can re-
sult in physical inconsistencies and fictitious instabilities.

Correctly defining a representative ensemble is also cru-
cially important for the problem of equivalence of statistical
ensembles, which is discussed in Sec. IX.

IX. PROBLEM OF ENSEMBLE EQUIVALENCE

The examples of the previous sections show that the sta-
bility properties of a system can be different in different
ensembles. More generally, the same physical quantity may
be different, being calculated in two different ensembles.
Does this mean the failure of the basic principle of statistical
mechanics, stating the equivalence of ensembles for large
systems? This question is analyzed in the present section.

First of all, let us stress that, as is clear from the previous
sections, a physical system and a describing ensemble do not
exist separately, but they are intimately connected. A correct
formulation of an ensemble does presuppose that it includes
the information on the main system features. An ensemble,
which is adequate for the given physical system, is only that,
which properly represents the system, that is, a representa-
tive ensemble. But if there are two representative ensembles
for the same system, then, by their definition, they must yield
identical results for the same physical quantities. In the other
case, at least one of these ensembles does not correctly de-
scribe the system, hence, is not representative. Also, in the
case of equilibrium, it is meaningful to talk only about stable
systems, as far as an unstable system cannot be in absolute
equilibrium. Thus, in terms of representative ensembles, the
following statement is straightforward: Two ensembles are
equivalent if and only if both of them are representative for
the given stable system. Conversely, when two ensembles are
not equivalent, then at least one of them is not representative.
An ensemble that is not representative for the given system
may be representative for some other system. However, there
is not any reason to require that two ensembles applied to
two different physical systems be equivalent. Ensemble non-
equivalence, vaguely formulated, is a rather artificial non-
physical problem caused by an improper usage of ensembles
not representing the considered system.

To be more correct, let us recall that, generally, one dis-
tinguishes two types of ensemble equivalence—
thermodynamic and statistical. In thermodynamics, a physi-
cal system is characterized by thermodynamic potentials,
each of which is a function of its natural thermodynamic
variables �1–7�. The system is stable, when thermodynamic
potentials enjoy the property of convexity or concavity with

respect to the appropriate variables. The thermodynamic po-
tentials, expressed through different thermodynamic vari-
ables, are connected with each other by Legendre transforms
�1–7�. All thermodynamic characteristics are defined as de-
rivatives of thermodynamic potentials. When the latter are
connected by Legendre transforms and correspond to a stable
�in the sense of the convexity or concavity property of the
potentials� system, then the thermodynamic characteristics,
calculated in different ensembles, coincide with each other.
Summarizing, the concept of thermodynamic equivalence
can be formulated as follows:

Thermodynamic equivalence. Two ensembles, represent-
ing a stable physical system, are thermodynamically equiva-
lent if and only if their thermodynamic potentials are mutu-
ally connected by Legendre transforms.

A rigorous proof of this statement for the case of the
macrocanonical and canonical ensembles can be found in
Refs. �55,56�. Several examples of systems with long-range
interactions have been considered, whose microcanonical en-
tropy is not a concave function of energy �55–58�. The inter-
nal energy of such systems, though being nonadditive, can be
made extensive by means of the Kac-Uhlenbeck-Hemmer
normalization �59� yielding a well-defined thermodynamic
limit. The canonical free energy is a concave function of
inverse temperature, but the microcanonical entropy is not a
concave function of energy. This does not allow us to use the
Legendre transform in both directions �55,56�. The noncon-
cavity of the microcanonical entropy results in the appear-
ance, for some range of energies, of negative specific heat,
while in the canonical ensemble, specific heat is always posi-
tive. Because of this, one tells that, for such models with
long-range interactions, the microcanonical and canonical
ensembles are not equivalent. However, a microcanonical en-
semble with a nonconcave entropy does not represent a
stable physical system, i.e., this ensemble is not representa-
tive. As is explained above, there is no sense to compare
nonrepresentative ensembles, which are not obliged to be
equivalent. To make the microcanonical ensemble represen-
tative, it must be complimented by the concavity construc-
tion rendering stability again. After this, it becomes represen-
tative and completely equivalent to the canonical ensemble.

Nonconcave microcanonical entropy and negative specific
heat are also known for gravitating systems, as is reviewed in
Refs. �60,61�. To avoid the negative specific heat, one can
again invoke a concavity construction or to use the canonical
ensemble. However, contrary to other models with long-
range interactions, the energy of gravitating systems, being
proportional to N5/3, cannot be made extensive, which does
not allow the existence of the thermodynamic limit. For
gravitating systems, the condition of global equilibrium �62�

E

N
� const � 0 �106�

is not valid. Therefore, they may be in principle unstable,
which makes questionable the application for their descrip-
tion of equilibrium statistical mechanics.

The notion of statistical equivalence of ensembles is
based on the comparison of the averages of observable quan-
tities calculated in different ensembles. To concretize this, let
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us consider the operators of observables Â defined on a Fock
space F. The set of all these operators forms the algebra of

observables A��Â�. The statistical state is defined �44,63�
as the set �A����Â�� composed of all statistical averages for
the algebra of observables. The calculation of the averages is

defined in the standard way as the trace of Â, with a statis-
tical operator corresponding to the chosen ensemble. Let us
define as �A�	, the statistical state related to the grand ca-
nonical ensemble, with a chemical potential 	. For short, the
dependence of the state on temperature T and volume V is
not shown explicitly. For instance, the average density is

� =
N

V
, N = �N̂�	. �107�

Suppose, we wish to compare the grand canonical and
canonical ensembles. Recall that the general structure of the
Fock space is a direct sum

F = 
n=0

� Hn �108�

of the n-particle Hilbert spaces Hn. The pertinent mathemati-
cal details can be found in Refs. �41,42,44,63�. Define a re-

striction of the operator Â on Hn as Ân. Then the statistical
state in the canonical ensemble can be denoted as �AN��,
with a fixed density � and the number of particles N. In view
of the structure �108�, the states �A�	 and �AN�� are related
through the integral

�A�	��� = �
0

�

K��,x��AN�x���dx , �109�

in which 	=	��� is a solution of Eq. �107� and N�x��xV.
The kernel K�� ,x� is called the Kac density. The correspond-
ing states coincide, when in the thermodynamic limit

K��,x� → ��� − x� .

Then, one has

�A�	��� = �AN��, �110�

which signifies the statistical equivalence of grand canonical
and canonical ensembles.

Comparing the statistical states, one has to be very cau-
tious, remembering that it may happen that there is not just
the sole canonical or grand canonical ensemble, but there
could be several such ensembles depending on additional
constraints specifying the properties of the considered sys-
tem. This is related to the nonuniqueness of the Fock space
�108� and the existence of nonequivalent operator represen-
tations, as is discussed in Secs. VII and VIII. Therefore, one
has, first of all, to define the appropriate representative en-
sembles and only after this one can compare the related av-
erages. If at least one of the ensembles is not representative,
then there is no sense to compare the averages and equality
�110� does not need to be valid.

As an example, let us take a Bose-condensed system,
which, according to the previous sections, can be considered
either using an operator representation on the gauge-
symmetric space F��� or employing the Bogolubov repre-

sentation on the space F��1�, with broken gauge symmetry.
In the former case, some fictitious instabilities may arise and
Eq. �110� may become invalid. However, this would not im-
ply nonequivalence of the ensembles, but would simply
mean that nonrepresentative ensembles are involved.

Recall as well that a representative ensemble is assumed
to represent a stable system. For unstable models, Eq. �110�
does not have to be always valid. For instance, if we consider
the ideal Bose gas in a box, which, as has been explained
above, is not stable, then there is no reason to require that
Eq. �110� be true. This is really so below the condensation
point �64,65�, where the Bose-condensed gas becomes un-
stable. This instability is manifested by thermodynamically
anomalous density fluctuations. The ideal Bose gas is also
shown �65� to be unstable with respect to boundary condi-
tions, whose slight variation leads to a dramatic change of
the spatial particle distribution, even in the thermodynamic
limit. This is contrary to the behavior of realistic stable sys-
tems, for which the influence of boundary conditions disap-
pears in the thermodynamic limit. Changing, for the ideal
Bose gas, the boundary conditions from repulsive to attrac-
tive �65� transforms the Bose-Einstein condensation from the
bulk phenomenon to a strange surface effect, when the con-
densate is localized in a narrow domain in the vicinity of the
system surface, being mainly concentrated at the corners of
an infinite box. It is clear that a system, in which the con-
densate is localized somewhere at the corners of an infinite
volume, is a rather unphysical object.

Thus, formally comparing two ensembles, one sometimes
can arrive at their seeming nonequivalence. This, however, in
no way invalidates the basic principle of statistical mechan-
ics stating the ensemble equivalence. This just means that at
least one of the compared ensembles is not representative,
which also includes that the system may be intrinsically un-
stable. The principle of equivalence holds only for represen-
tative ensembles, which represent stable systems.

X. CONCLUSION

The analysis is given of the relation between the stability
properties of statistical systems and the fluctuations of ob-
servable quantities. The emphasis is made on the composite
observables that are represented by the sums of several
terms. The main result of the paper is the theorem connecting
the global fluctuations of an observable with the partial fluc-
tuations of its components. The theorem is general, being
formulated for an arbitrary operator represented as a sum of
linearly independent self-adjoint operators. These operators
can be associated with the total and partial observable quan-
tities of a statistical system. The theorem tells us that: The
total dispersion of an operator, being a sum of linearly inde-
pendent self-adjoint operators, is thermodynamically anoma-
lous if and only if at least one of the partial dispersions is
anomalous, with the power of N in the total dispersion de-
fined by the largest partial dispersion. Conversely, the total
dispersion is thermodynamically normal if and only if all
partial dispersions are normal.

The theorem allows us to understand the relation between
the fluctuations of partial observables and the fluctuations of
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the total observable. Respectively, the character of partial
fluctuations turns out to be directly related to the stability of
statistical systems. Several examples illustrate the practical-
ity of the theorem, helping to avoid wrong conclusions that
could happen when studying the behavior of partial observ-
ables. In particular, the fluctuations of condensed, as well as
noncondensed particles, in a Bose-condensed system must be
normal, if the system is assumed to be stable. In the same
way, fluctuations in systems with continuous symmetry are
also thermodynamically normal.

Breaking of gauge symmetry helps to eliminate fictitious
instabilities arising in Bose-condensed systems. Generally, it
is crucially important that a system be characterized by its
representative ensemble. This makes it possible to avoid ar-
tificial contradictions in the theory and the related unphysical
instabilities. One of the basic principles of statistical me-
chanics, the principle of ensembles equivalence, holds only
for representative ensembles correctly representing stable
statistical systems.
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APPENDIX A: NONCOMMUTATIVITY OF BOGOLUBOV
SHIFT

This appendix illustrates the noncommutativity of the
Bogolubov shift and the Hartree-Fock-Bogolubov �HFB� ap-
proximation. When one accomplishes in function �52�, first,
the Bogolubov shift �53� and then the HFB approximation
for �1�r�, one gets expression �55�, with the correct limiting
behavior. But in the other way round, employing, first, the
HFB approximation for ��r� and, after this, substituting the
Bogolubov shift �53�, one gets

g�r12� = 1 +
2�0

2

�
+

2�0

�2 Re��1�r1,r2� + �1�r1,r2��

+
1

�2 ���1�r1,r2��2 + ��1�r1,r2��2� .

The limiting behavior of this pair correlation function is not
correct, since here

lim
r12→�

g�r12� = 1 +
2�0

2

�2 ,

which would be true only when �0�0. But when �0�0, we
confront the problem of the condensate overcounting.
Thence, these procedures are not commutable. And one has,
first, to introduce the Bogolubov shift �53� and only after this
to resort to the HFB approximation.

APPENDIX B: NONEXISTENCE OF PHASE OPERATOR

To show that the representation �63� does not exist, we
may use the method of reduction to absurdity. Suppose that

this representation is correct. Then, from the commutation
relation

�n̂�r�,�̂�r��� = i��r − r�� ,

we obtain for the number-of-particle operator,

N̂ �� n̂�r�dr ,

the commutaton relation

�N̂,�̂�r�� = i .

From here, taking the matrix element with respect to the

number basis ��n��, for which N̂�n�=n�n�, we find

�n − n���n���r��n�� = i�nn�.

Setting here n=n�, we get the senseless equality i=0. Thus,
the representation �63� does not exist.

Now, suppose that the representation �64� is correct. Then
for the density operator, we have

n̂�r� � �†�r���r� = ��r� .

Hence, the number-of-particle operator becomes identical to
the total number of particles,

N̂ =� ��r�dr = N .

At the same time, there is an exact relation

���r�,N̂� = ��r� .

Using this for N̂=N, we get the senseless equality ��r�=0.
Hence, the representation �64� is wrong.

In this way, neither representation �63� nor representation
�64� are correct. The phase operator, defined through these
representations, does not exist. To introduce correctly a kind
of a quasiphase operator, one should employ the Pegg-
Barnett technique �36�.

APPENDIX C: GAUGE-SYMMETRY BREAKING

The simple method of infinitesimal sources may not al-
ways break gauge symmetry. To illustrate this, it is sufficient
to give at least one counterexample. For this purpose, let us
consider the Hamiltonian

H =� �†�r���r���r�dr ,

with a positive function ��r��0. This Hamiltonian is invari-
ant under the gauge transformation

��r� → ei���r� ,

where � is any real-valued number. Hence ���r��=0. To
break the gauge symmetry, following the standard method of
infinitesimal sources, one adds to the Hamiltonian H a term
lifting the symmetry. For instance, the Hamiltonian
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H� � H − �� ��*�r���r� + ��r��†�r��dr ,

where ��r� is a complex-valued function, is not gauge invari-
ant. The latter Hamiltonian can be diagonalized by means of
the canonical transformation

��r� = �
��r�
��r�

+ �̄�r� ,

in which the new field operator �̄�r� enjoys the same com-
mutation relations as ��r�. Then, we have

H� = E� +� �̄†�r���r��̄�r�dr ,

with the notation

E� � − �2� ���r��2

��r�
dr .

For the diagonal in �̄�r� Hamiltonian H�, one has ��̄�r��=0.
Therefore,

���r�� = �
��r�
��r�

.

According to the method of infinitesimal sources, after cal-
culating the averages, one should set �→0. But then

���r�� → 0 �� → 0� ,

because of which the gauge symmetry has not been broken.
Contrary to this, the Bogolubov shift �67� is a sufficient con-
dition for gauge-symmetry breaking.
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